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Abstract

System-on-chip (SOC) is widely believed to represent the next major market for
microelectronics, and there is considerable interest world-wide in developing effec-
tive methods and tools to support the SOC paradigm. A SOC consists of several
complex embedded cores put together to achieve desired functionality. Testing of
such core based SOCs has become a major challenge for engineers as it must ad-
dress several conflicting goals, such as, reduction of Test Application Time (TAT),
resource conflicts arising due to sharing of test resources, power and thermal con-
straints.

While SOCs have become popular as a means to integrate complex function-
ality into designs in a relatively short amount of time, there remain several road-
blocks such as delays introduced due to long interconnects which cannot be scaled
down with the transistors. Emerging 3D Stacked-ICs (3D-SICs) promise to over-
come this challenge with the help of interdie vias. In 3D-SICs different dies are
stacked and interconnected using through-silicon vias (TSVs) bonding. However
a major hindrance to widespread adoption of 3D-SIC technology is the lack of
understanding of the 3D testing problem. Test scheduling and architecture opti-
mization for 3D-SICs have remain largely unexplored even though many new test
challenges arising due to various 3D design methodologies have been identified.

This work presents test architecture optimization and test scheduling strate-
gies for TSV based 3D-Stacked ICs (SICs) under various hardware and power
constraints. For hard-dies, where the 2D test architecture of each die is fixed,
a 3D test scheduling heuristic has been developed to select the test concurrency
between the dies of the stack and minimize the overall test time, without violating
the system level resource and TSV limits. For 3D-SIC with soft-die, a direct stack
approach has been proposed to minimize the overall test time of the stack by using
a Particle Swarm Optimization (PSO) based meta search technique to take the
decision regarding allocation of resources to the cores present on different dies of
the stack. A die first approach is also developed for 3D-SICs with soft dies, which
uses PSO to first select internal test schedules of the dies at core level and then
the test schedule of the overall stack at die level. The dual approach allows for a
comprehensive testing solution for 3D-SICs under various scenarios.

The work also addresses the issues of high power consumption during test.
Test concurrency between individual cores or dies is selected such that test power
consumption and TSV limit of the entire stack is honoured. While the existing
approaches use either a fixed power value for the entire test session of a core, or the
cycle-accurate power values, the proposed work divides the power profiles of cores
into fixed-sized windows, reducing computational complexity of test approaches,
while reducing the amount of over-estimations of instantaneous power. Test Ap-
plication Time (TAT) for power-aware testing is further improved by using first a
multi-frequency based test approach, as opposed to single-frequency one.

Keywords: 3D Stacked-IC; System-on-Chip; Test scheduling; Test Appli-
cation Time; Particle Swarm Optimization; Window-based peak power model;
Through-Silicon Via; Multi-frequency testing
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Chapter 1

Introduction

1.1. System-on-Chip
Technology around us is evolving very fast, so is VLSI fabrication technology.

From past several years area of chip is reducing day by day, and integrating more

number of processing elements like memory, I/O blocks, GPUs in a single chip.

These are called System on Chips (SOCs). However, there remain several road-

blocks to rapid and e�cient system integration. Test development is now seen as

a major bottleneck in SOC design, and test challenges are a major contributor to

the widening gap between design and manufacturing capability. Figure 1.1 shows

an example SOC with di�erent components as cores. SOC test development is

Figure 1.1: A typical 2D SOC [22]

especially challenging for several reasons. An SOC is constructed by integrating

embedded cores provided by di�erent vendors. However vendors are reluctant to

provide design information about their cores to the integrator. In addition the

design-for-testability hardware of the chip can't be accessed. Instead a set of test

vectors or patterns is provided that gaurantees a speci�c fault coverage. These

patterns are applied by the integrator to test the chip. With increasing complex-

ity of System-on-Chips, the volume of test data needed for testing has increased

1



1.1. System-on-Chip 2

signi�cantly leading to increased test time and creating the requirement for more

storage space in the Automatic Test Equipment (ATE). This leads to an increase

in test cost of SOCs. Cores are often embedded in several layers of user-designed

or other core-based logic and no physical access to the pins of the cores is possible

from chip I/Os. Thus it is needed to provide a test access path from the SOC

primary pins to the embedded cores and vice-versa with su�cient bandwidth to

ful�ll the test requirements of the cores. Figure 1.2 shows the test infrastructure

needed to make the cores testable. Source and sink, present on or o� the chip,

are mainly used to transport the test stimuli into the chip and to analyze the

test responses coming out of the chip. Test Access Mechanism (TAM) need to be

designed to transport test stimuli from the source (ATE) to the core under test

(CUT), and also the responses from the core to the sink (ATE). A test wrapper

for a core is a thin shell around the core for communication between the TAM and

the CUT. It allows for modular testing of the SOC.

To keep SOC Test Application Time (TAT) within a reasonable limit, one

solution is to perform parallel testing of several cores. A set of cores can be

tested in parallel only if it does not violate the system level power limit at any

point of the schedule. However, due to large number of switching activities in

the scan cells, test mode power consumption is much higher than functional mode

operation. Most of the System on Chip test scheduling problems assume that the

cores operate at a single frequency during test. However, in recent times multi-

frequency operation of embedded cores, to reduce power consumption and TAT

has drawn the interest of many researchers.

Figure 1.2: Test infrastructure for SOC



1.2. 3D Stacked-ICs 3

1.2. 3D Stacked-ICs
Interconnects, which cannot be scaled down with transistors, are becoming main

stumbling block in IC design. Long interconnects in 2D-ICs hamper circuit perfor-

mance with its high circuit delay and power consumption. Recently, 3D-SIC has

emerged to be a potential solution to this problem. Instead of designing 2D-IC

with long global interconnects, interconnect lengths can be reduced signi�cantly by

designing circuit components into several layers and bonding them together. This

helps to achieve high bandwidth, low latency circuit with higher packaging den-

sity and low footprint. In this section we discuss di�erent kind of 3D-integration

methodologies.

3D Stacked-ICs can be constructed using two integration technologies : mono-

lithic integration and stacking integration [79]. In monolithic integration, a single

wafer is used to grow multiple device layers serially. Afer one layer of devices is

grown along with desired interconnects, it is followed by the creation of an iso-

lation layer. Another layer of devices can now be grown on top of this. 3D vias

are used to interconnect di�erent layers. Since the devices and their wiring are

processed on a single substrate, the added manufacturing complexities of thinning,

alignment, and bonding and the need for through-silicon vias (TSVs) are nonexis-

tent. However signi�cant changes in fabrication processes and technologies would

have to take place [76] to make monolithic integration possible since it requires

growing devices on top of each other on the same substrate. Figure 1.3(a) shows

a monolithic 3D-SIC cross-section consisting of three device layers.

Unlike monolithic integration which requires changes to the fabrication tech-

nology, stacking allows individual 2D die layers to be stacked vertically. These dies

can be manufactured separately using existing technology with relatively minor

additional modi�cations of substrate thinning and through-silicon via �lling. Then

the dies can be integrated and bonded onto the same stack using precise allignment

of the interdie vias. Since little or no modi�cations are required for fabrication of

dies through stacking, it is more practical than monolithic integration and is the

focus of 3D research [79] as well as of this work.

Stacking-based integration can be further separated into three categories :

wafer-to-wafer, die-to-wafer, and die-to-die stacking [79]. In wafer-to-wafer stack-

ing, two or more wafers, are stacked on top of one another and the resulting 3D

stack is then diced to create the individual 3D-SICs. In die-to-wafer stacking, a

wafer is �rst diced into individual dies and then stacked on top of another wafer.

More dies can be stacked after this process. In die-on-die stacking, wafers are diced

into individual dies and then stacked on top of each other. Die-to-die stacking is

desirable as it allows for testing of individual die prior to being introduced to a
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stack, allowing for increased stack yield.

3D-SICs can also be categorized based on the orientation of stacking into face-

to-face bonded or face-to-back bonded stacks. Both will di�er in fabrication pro-

cesses required to create the interconnecting vias that connect di�erent layers. In

face-to-face bonding, via stubs from metal layers of two wafers or dies are bonded

directly. The only TSVs needed going through the substrate are those for I/O or

power as shown in Figure 1.3(b). Fabrication remains largely unchanged in this

case, although it limits the integration to only two layers in a stack. Thus face-

to-face bonding doesn't allow for scalable 3D integration. In face-to-back bonding

as shown in Figure 1.3(c), the back side of the top wafer is thinned and then

bonded to the bottom wafer. TSVs are etched and �lled on the thinned side of the

wafer. This technique allows for stacking multiple dies as opposed to face-to-face

stacking.

Figure 1.3: 3D IC fabrication methods: monolithic fabrication (a), face-to-face
bonding (b), and face-to-back bonding (c) [42]

As shown in Figure 1.4, several techniques have been proposed to interconnect

di�erent layers in the stack that include wire bonding, microbumps, contactless

and TSVs [16]. Wire bonding based interconnects can be used only on the pe-

riphery of the stack. However the interconnect density is less and it requires the

creation of bonding pads across the metal layers as the external wires lead to me-

chanical stress. Microbumps are small bumps of solder or other metallic elements

that are present on the die surface and are used to connect the dies together. In-

terconnects are used to route the microbumps to the periphery where they can be

routed to dies above or below. As a result microbumps do not reduce the parasitic

capacitances that arise in 2D SOCs due to interconnects. Contactless methods

can be both inductive and capacitive. They su�er from manufacturing di�culties

and insu�cient interconnect densities. TSVs are vertical interconnects that are

etched and �lled into the substrate during manufacture. The TSVs are exposed

by thinning the substrate. When dies are stacked on top of other dies, they must
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be aligned and bonded. Alignment ensures that the TSVs make direct connection

with each other while bonding ensures that the dies are permanently attached to

each other by making contact between the TSVs.

To summarize, 3D-SICs are constructed using face-to-back stacking integration

technology using TSVs and such SICs are the focus of research. Such 3D-SICs

are commercially available [72, 67] but are limited to stacked memories. This

is because of the relative ease with which memory dies can be matched, tested

and repaired. In order to further advancement of 3D technology, e�cient testing

techniques need to be developed for the 3D-SICs.

(a) (b)

(c) (d)

Figure 1.4: Proposed Interconnects; (a) Wire Bonding, (b) Microbumps, (c) Con-
tactless, (d) TSV [79]
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1.3. Testing of 3D Stacked-ICs
Inspite of their advantages, testing of 3D-SIC is signi�cantly more challenging

because of its high complexity. In addition to challenges associated with 2D SOC

testing, following additional complications arise in the case of 3D-SIC testing.

� 3D Stacked-ICs need to be tested at several stages. Individual dies needed to

be tested and Known Good Dies need to be identi�ed before they are stacked

so that yield loss for each die is not compounded by stacking. This creates the

need for pre-bond testing. In addition partial or mid-bond test of dies bonded

so far and post-bond test of the complete stack are also essential. Post bond

test ensures that no defects were introduced during the thinning, alignment or

bonding process.

� Though pre-bond testing may seem similar to convential testing of 2D SOCs,

it o�ers several DFT challenges not present in 2D SOCs. The thinned wafers

are more fragile which necessitates a decrease in the number of probe contacts

made during probing and a decrease in the contact-force.

� TSVs also present a testing problem due to there high densities and small sizes

which makes TSV test using individual probing di�cult during pre-bond test.

� Individual dies may contain only partial logic and the complete functional circuit

may be spread across die layers. Embedded cores may also span multiple dies,

further complicating both pre-bond and post-bond test.

� Test access during post-bond test is limited as only a few dedicated test pins are

present on the bottom die to test the entire stack. Thus a 3D TAM is needed to

route test data to and from each die via the lower dies in the stack using TSVs.

I/O pins are also present only on the bottom die which limits the test access

for individual dies during pre-bond test.

� The number of TSVs available to transport test logic, also know as test elevators,

are limited as they are used to for other important functions such as providing

functional signals, power/ground and clock.

� New defect types are introduced due to additional manufacturing processes such

as thinning, alignment and bonding, required for 3D-SIC manufacture.

� Thermal and power constraints may further limit 3D-SIC testing. Stacking of

dies createst di�culties for heat dissipation which thus limits dies and cores

that can be tested together.
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A die level wrapper is needed to test 3D-SICs that allows pre-bond, post-bond

tests as well as testing of TSV interconnects. In addition to functional and test

modes it must allow bypass of test data to and from higher dies in the stack. This

wrapper referred to as P1838[47] standard is currently under development and

builds on the current standards, IEEE 1149.1 and IEEE 1500.

1.4. Scope and Objective of the Work
Unlike previous works, this work performs 3D-SIC test scheduling using adirect

stack and a die �rst approach. Thedirect stack approach o�ers more �exibility

for optimization and is essential when TAT minimization of overall stack is the

primary focus. It also o�ers a reduced CPU time required to generate the test

schedule of the entire stack. The availaibility of both approaches allows for opti-

mized testing of both hard dies and soft dies. Thedie �rst approach allows testing

in the case where test resources allocated to an individual die can't be changed

for duration of the test. A die �rst approach is also useful in cases where defect

free dies or Known Good Dies (KGDs) need to be identi�ed �rst before stacking

and then packaged into the complete 3D-SIC. Fordie �rst testing, other 3D test

architecture optimization approaches [54], consider one of the previously reported

2D test architecture optimization methods [21], however, this work has developed

a new PSO guided 2D test architecture optimization technique to generate test

schedule of individual dies.

For power-aware SOC test scheduling, the works reported in the literature

have either considered global peak power model or cycle accurate power model.

Both the power models have their own drawbacks which are further ampli�ed for

3D-SICs. An intermediary approach for power pro�ling of the cores may result

in a trade-o� between the power overestimation of global peak power model and

the schedule generation time of cycle-accurate power model. Thus in this work,

the intermediate window-based peak power model is used to avoid drawbacks of

existing power models.

Few works have considered power-aware 3D-SIC test scheduling and even fewer

have considered multi-frequency testing for 3D-SICs. This work addresses the issue

of optimized power-aware testing in 3D-SIC using a multi-frequency approach

while also giving a feasible architecture for the same. As power consumption is

directly proportional to the frequency, a suitable selection of operating frequency

for di�erent cores can increase test parallelism without violating power limit.

The objective of this research work is to develop a 3D-SIC test scheduling

strategy, which can minimize TAT without violating the resource, TSV and power

constraints. Strategies are developed for both individual dies and the overall stack

so that the 3D-SIC can be tested before and after it has been stacked. In recent
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times Particle Swarm Optimization [36] has evolved as a new evolutionary search

strategy that often performs better than other evolutionary approaches because

of its faster convergence towards the optimal solution. We have used PSO based

evolutionary technique to guide the bin-packing algorithm.

1.5. Work Carried Out in the Thesis
The work carried out in this research work are as follows.

1.5.1. Basic 3D Stacked-IC Testing

Figure 1.5: A typical 3D-SIC

In this work, a test architecture optimization and test schedule generation

strategies for 3D-SIC with hard dies as well as soft dies has been presented. Test

architecture optimization for 3D-SIC can be approached in two ways.

� Direct Stack optimization: Here a 3D test architecture and test schedule

is developed for the entire stack directly by selecting test concurrency between

individual cores of the various dies.

� Die �rst optimization: Here �rst a 2D test architecture and test schedule

is developed for the individual dies of the stack. This is followed by stack

optimization where 3D test architecture and test schedule is developed for the

overall stack by selecting test concurrency between dies.

Both approaches consist of one or more of the following major sub-problems.

1. Resource Constrained Test Schedule generation: Reduce TAT without

violating resource constraint in terms of test lines available.

2. TSV Constrained Test Schedule generation: Reduce TAT without ex-

ceeding the maximum number of TSVs available for testing purposes.
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3. Power-aware Test Scheduling: Reduce TAT without violating resource and

power constraints. During power-aware testing, frequency can be scaled down

to reduce dynamic power consumption or scaled up to reduce TAT.

For 3D-SIC with hard dies, the vendors provide fabricated dies with �xed test

bandwidth and test time to the 3D-integrator. Hard dies o�er less �exibility for

optimization, as the test engineers are limited to selection of test concurrency

between dies. 3D-SIC with soft dies provide better opportunity of optimization

of test time than 3D-SICs with hard dies. Unlike 3D-SIC with hard dies, the

test architecture of individual dies is not �xed for soft dies. Any number of test

resources within a stack level limit can be allocated to any die. Thus for 3D-SIC

with soft dies, both die �rst and direct stack approaches are used. In thedie

�rst approach, 2D architecture of individual dies is developed which is followed by

stack level optimization. In the direct stack approach test resources are allocated

directly to individual cores in the stack. A PSO [36] based search procedure is used

to take the decision about the test resource allocation for individual dies or for

individual cores and a 3D bin-packing approach is used to decide the concurrency

between them without violating resource and TSV constraints. Both session-based

and session-less testing have been considered in the case of hard dies and soft dies.

Session-based testing is advantageous due to ease of implmentation while session-

less testing allows for reduced TAT by increasing test compaction.

1.5.2. Power-aware test scheduling

In the direct stack approach, test concurrency between individual cores is selected

such that test power consumption and TSV limit of the entire stack is not exceeded.

In the die �rst approach power-aware testing is �rst performed for individual dies

by considering di�erent power budgets. This data is then used for stack level

optimization where the PSO based approach assigns test resources and power

budgets to individual dies such that the overall test time is minimized without

exceeding the power budget of the overall stack and also of the individual dies.

In both approaches, to overcome the scheduling complexity of cycle-accurate

power model and to reduce the power overestimation of global peak power model,

our work proposes to use an intermediary approach. For each core, the cycle-

accurate power values are estimated considering the switching activities in every

clock cycle in the scan chains. However, instead of taking cycle-accurate power,

the peak power values over a time-window have been taken to approximate the

core power over that interval of test time. Our proposed window-based peak

power model needs reasonably less number of power values for a core, hence able

to generate test schedule much faster, than with cycle-accurate power model. The

process, though introduces some inaccuracy in the power model, works well for



1.6. Contribution Of The Thesis 10

most of the test cases. Unlike [65], our approach does not partition the total

available TAM width into �xed sized buses. It rather follows the bin-packing

approach [29] to introduce �exibility in TAM width allocation to cores or dies. The

reduction in the number of power values has also enabled us to design a 3D-bin

packing heuristic, guided by Particle Swarm Optimization (PSO) [36] based search

procedure, to evolve better test schedules than many of the contemporary SOC

testing approaches, while working with ITC'02 benchmarks. CPU time needed

to generate the test schedule improves by two order of magnitude compared to a

similar scheme using cycle-accurate power model.

1.5.2.1. Multi-Frequency Test Scheduling

As present day's cores are provided with the �exibility of multi-frequency opera-

tion, shifting of test data in di�erent frequency levels in those cores is also possible.

In multi-frequency test environment, the cores can operate in di�erent frequency

levels while the ATE, which transports test data to the cores, operate at a single

frequency. So some architectural modi�cation is needed to synchronize the data

rate between the cores and the ATE. To provide multi-frequency test facility, we

have extended our power-aware test scheduling approach to the multi-frequency

one. A new simple multiplexer based architecture capable of sending test data at

di�erent frequencies, has been proposed to facilitate multi-frequency test infras-

tructure in our work. During the test scheduling process, a PSO guided approach

is used to assign frequencies to di�erent cores.

1.6. Contribution Of The Thesis
� Surveyed the techniques for basic and power aware test scheduling of SOCs

and 3D-SICs

� Proposed bothdie �rst and direct stack approaches for testing of 3D-SICs

� Proposed a power model to estimate power pro�les of the cores during test-

ing.

� Proposed a PSO guided 3D-rectangular bin packing heuristic for test schedul-

ing.

� Proposed a multi-frequency power-aware tesing approach for SOCs and 3D-

SICs.

1.7. Organization Of The Thesis
The rest of the thesis is organized as follows.
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B Chapter 2: This chapter presents a survey of the existing SOC and 3D-SIC

test architecture development and test scheduling strategies under power,

resource and TSV constraints. This chapter also discusses about di�erent

optimized power-aware testing techniques such as multi-frequency testing.

B Chapter 3: A PSO guided 3D-bin packing based basic test scheduling

strategy for 3D-SICs has been described in this chapter. A dual approach

to 3D testing - direct stack and die �rst , is discussed.

B Chapter 4: This chapter presents power-aware test scheduling strategies

for 3D-SICs. Multi-frequency testing is presented as a strategy to optimize

power-aware testing.

B Chapter 5: This chapter summarizes the contribution of this research and

presents outlines of future problems.

1.8. Conclusion
This chapter has provided an overview of the testing challenges that must be

overcome before 3D SICs can be widely adopted by industry and the test standards

that are currently being developed. Optimization techniques are needed to make

the best use of limited re- sources, both in terms of test resources, TSV usage and

test scheduling.



Chapter 2

Background And Related Work

2.1. Introduction
Testing of 3D Stacked-ICs brings forward new challenges that must be overcome

to enable their adoption. Test engineers have to take care of additional test pa-

rameters like TSVs. The challenges associated with 2D SOC testing such as test

resource utilization, power and thermal concerns, increasing test data volumne

still remain signi�cant. While 3D testing is still an emerging research �eld, vast

amount of research has endeavored to provide a better understanding of 2D SOC

testing. A large number of test strategies and algorithms have been developed to

reduce the test cost.

In the following section, we have presented a detailed survey of the existing

techniques corresponding to each of the areas considered in this research work.

2.2. Test Architecture Optimization And Test

Scheduling for SOCs
Test architecture optimization and test scheduling are the most important parts

of SOC testing. An extensive research has been carried out in this area and

still it is the subject of interest for the researchers. For a SOC with speci�ed

parameters of its cores and given the system level values of maximum utilizable

test resources, maximum tolerable power and thermal limits, a test architecture

and a test schedule are needed to be designed carefully so as to minimize the test

cost like test application time and test area overhead.

In the literature, solution to the test scheduling problem has been approached

by �rst designing wrapper saround the cores [74, 26]. If a core has a total of k

number of input/output/scan pins and allocated only b-bits(b � k) of test signal

lines, the wrapper design algorithm (suggested in [74]) joins some of these pins over

chains, so that test data can be transported b-bits at a time. Naturally, decreasing

b will increase test time. Some of the approaches [64, 62] [74] perform a complete

partitioning of the on-chip test resources and allocate one partition to each core.

12
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On the other approaches where complete partitioning is not performed; test re-

sources are allocated to cores depending on availability. The second approach

provides more�exibility, since deciding an optimal partitioning is an NP-complete

problem [26]. In both the approaches, scheduling is performed to determine the

duration at which individual cores are to be tested. A core can be tested only if

resources are available for the duration of its test. Since with di�erent amount

of allocated test resources, test time varies, it gives rise to a bin packing problem

[81]. Bin width is equal tothe total number of test signal lines. Testing of each

core is represented as a rectangle having width equalto the number of signal lines

allocated and height corresponding to the associated test time.

Some of the approaches [27, 6, 65] perform a complete partitioning of the on-

chip test resources and allocate one partition to each core, known asf ixed -width

TAM architecture . On the other hand, a f lexible -width TAM architecture

[78, 87, 77, 19] does not perform complete partitioning; test resources are allocated

to cores depending on availability. In both the approaches, scheduling is performed

to determine the duration at which individual cores are to be tested.

The integrated problem of TAM partitioning and test scheduling is NP-hard

[29]. It has been solved using di�erent optimization techniques in the literature.

Authors in [30] have integrated the wrapper design, TAM partitioning and core

scheduling problems into a single one and proposed an Integer Linear Programming

(ILP) formulation to solve this problem. Similar problem has been solved in [28]

using a heuristic method. A graph based approach has been proposed in [38],

where it considered the minimum average completion time criteria. Instead of

the NP-nature of the problem, the graph-theoretic approach that considers the

minimum weight perfect bipartite graph matching, takes polynomial time. The

authors in [37] also have formulated the test scheduling as a network transportation

problem and solved it using a 2-approximation algorithm utilizing the result of

the single source unsplittable �ow problem. All these approaches have considered

�xed-width TAM architecture.

Due to the limitation of �xed-width TAM architecture, various other ap-

proaches used the �exible-width test architecture. However, it cannot always be

concluded that �exible-width architecture is better than �xed-width architecture

[80]. An architecture-independent theoretical lower bound on test time has been

presented in [20]. The work also presents a heuristic named TR-ARCHITECTURE,

suitable for both the �xed and �exible-length scan chains. In [23], the scheduling

problem has been formulated as a two-dimensional bin-packing problem. Here,

bin height is equal to the total number of available test signal lines. Test re-

quirement of each core is represented as a rectangle having height equal to the

number of signal lines allocated and width corresponding to the associated test
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time. These rectangles are to be packed into the bin so that the width of the bin is

minimized. An Evolutionary Algorithm (EA) based approach using sequence pair

representation and distributed bin-packing has been presented in [78]. Simulated

Annealing (SA) based two-dimensional bin-packing algorithm to solve SOC test

scheduling problem has been proposed in [87]. The work also proposes a wrapper

design procedure for cores with no scan cells. B*-tree based �oorplanning tech-

nique has been used in [77] transforming the scheduling problem to �oorplanning.

Height and width of the �oorplan represent the TAM width and test time of the

core respectively. The idea is to �nd a �xed height, minimum width �oorplan,

while there should be no overlap between the tiles in the �oorplan. Simulated

annealing has been used to solve this problem. Two stage Genetic Algorithm

(GA) based approach to solve SOC test scheduling problem has been presented

in [84]. Ant Colony Optimization (ACO) has been used in [4] to solve the SOC

scheduling problem. The work reported in [19] uses another Genetic Algorithm

(GA) based approach to select the rectangles to pack in a bin for the rectangular

2D-bin packing.

2.3. Prior Work On Power-Aware Testing
Several works in the literature consider power restricted test schedule generation.

Di�erent power models of the cores have also been proposed. The concept of

considering maximum power consumption value of a core as the �xed power value

throughout its testing, has been presented in [12, 24, 57, 7, 39, 18, 14]. This global

peak power model, although simple, is quite pessimistic, as power consumption is

never same throughout the duration of testing of the core. It may reach its peak

at certain time instants only. Also, all the cores being tested in parallel, may not

reach their peak power values at the same time instant. The resulting conservative

schedule increases the test application time (TAT). In [24], rectangular 3-D bin

packing approach has been adopted to solve SOC test scheduling problem under

power constraint. Power has been considered as the third dimension with test

resource and test time as other two dimensions of the bin. The authors, in [57],

have considered multiple test sets for testing of the core. An Integer Linear Pro-

gramming (ILP) based solution has been presented in [7]. Here the authors have

presented a reward model that allows the system integrator to incorporate pref-

erences arising from place-and-route constraints in allocating cores to test buses.

A greedy algorithm based technique has been proposed in [39]. A Genetic Al-

gorithm based approach, to minimize TAT has been reported in [18]. Here the

authors have used chromosome structure, mutation and crossover operators to se-

lect representative rectangles for rectangular 3-D bin packing approach for solving

the scheduling problem optimally. A shu�e frog-leaping algorithm (SFLA) that
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follows evolution of frog population has been used in [40] to solve the scheduling

problem under power constraint. All these power-aware test scheduling techniques

have used the global peak power model. Exact power model of each core has been

presented in [63]. The work approximates the power values for each cycle during

testing of the core, to be equal to the total transition in the scan cells, during test

pattern shift and capture in that particular clock cycle. The scheduling procedure

has been implemented using Best-Fit heuristics with �xed width TAM architecture

[63, 66]. Handling huge number of power values and keeping track of the power

pro�le for each clock cycle during scheduling makes this approach extremely time-

consuming. Authors in [61, 60] have tried to reduce power overestimation by a

less complex method using test vector reordering, test sequence expansion and

rotation. The manipulated power pro�le obtained using these methods has an

initial long low power part followed by a short high power part. However, the use

of this two local peak power approximation model (2LP-PAM) is limited to the

cases when testing is performed exclusively using ATPG-generated test vectors

and where the order of the test vectors can be changed. Unfortunately, in most

of the cases this pattern reordering may not be feasible as the ATE is preloaded

with test patterns.

Recently, introduction of multi-frequency operation of embedded cores has

given the test engineers the �exibility of multi-frequency testing. As power con-

sumption is directly proportional to the frequency, a suitable selection of operating

frequency for di�erent cores can increase test parallelism without violating power

limit. Several other approaches, using virtual TAM for bandwidth matching and

test data rate synchronization between ATE and cores operating at di�erent fre-

quencies have been presented in [83, 86, 85]. A test data multiplexer (TDM) /

test data demultiplexer (TDdeM) based approach has been used in [83] to ful�ll

the gap between the frequency of ATE and the cores. A dynamic recon�gurable

multi-port ATE based multi-frequency test scheduling strategy has been proposed

in [85]. However, all these works consider �xed average or peak power consumption

of the core during scheduling.

2.4. Prior Work on Test Scheduling of 3D Stacked-

IC
Recently testing of 3D-SIC has become more popular among researchers. Testing

and DFT-related challenges for 3D ICs has been studied in [41]. Wrapper de-

sign for TSV based 3D-SICs has been presented in [56] while some other works

[45, 48] have considered test architecture design. Die level wrapper design and

associated 3-D architecture to facilitate both pre-bond and post-bond testing has
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been proposed in [48]. Test architecture design for testing of 3D ICs has been

formulated in [45, 48, 8]. However test optimization methods have not discussed.

In [31] test optimization has been performed for a 3D SOC consisting of cores dis-

tributed over multiple layers, without considering a TSV constraint. This paper

claims that there should be no limit on maximum number of TSVs, which may

not be a valid assumption. Moreover, the proposed 3D test architecture may not

be feasible in practical cases. A matrix partitioning based cost model to account

for various test costs incurred during 3D integration and a test �ow selection to

optimize test cost has been proposed in [3]. A â€œbandwidth adapterâ€• based

test architecture, which can �t with multiple di�erent test data bandwidth has

been proposed in [43] for pre-bond, partial and complete stack testing. An ILP

based optimization method has been proposed in [55] for complete stack testing

as well as for multiple test insertion during bonding.

Several works [1, 9, 25, 32, 51, 49, 58, 59, 73] have considered thermal-aware

testing of 3D-SICs but only few address the issue of power consumption [68, 52].

Only a few works such as [69] consider multi-speed testing for 3D-SICs. [69]

considers dual speed testing for 3D-SICs and requires an ATE that can support

multiple channels. Dynamic Voltage and Frequency scaling (DVFS) has often

been used as a strategy to design an energy-e�cient system by reducing power

consumption of processors when their full performance is not required [11, 17].

More recently DVFS has been adopted as a test strategy to decrease TAT and

increase test compaction during power-aware testing [50, 71, 70, 35]. While several

works have addressed DVFS for testing [50, 71, 70, 35], only [52] considers DVFS

in the case of 3D-SIC testing.

2.5. Conclusion
In this chapter, we have reviewed various state-of-the-art testing strategies for

reducing test cost. Though several techniques have been proposed to resolve the

testing challenges, none of the proposed methods has come up with a solution that

performs reasonably good in all test scenarios. This justi�es the search for newer

techniques. Moreover, 3D-SIC testing has emerged to be much more challenging

due to the increased complexity of 3D-SICs and the need to transport test data

using TSVs. Thus, strategies are needed to be devised to tackle the emerging prob-

lems. From next chapter onwards di�erent test resource optimization strategies

developed in this research work have been presented.



Chapter 3

3D-Stacked IC Test Scheduling

3.1. Introduction
The objective of the 3D-Stacked IC Test Scheduling problem is to minimize the

Test Application Time (TAT). To achieve this, cores located on various dies sit-

uated at di�erent levels on the stack need to be tested parallely. However this is

made more di�cult in 3D-Stacked ICs due to its increased complexity.

Individual dies on the stack need to be tested before stacking (pre-bond testing

[3]) to ensure stacking of defect-free dies. Post-bond testing [3] is required after

completion of stacking of all dies, to ensure defect-free thinning, alignment, and

bonding during stacking. To reduce the cost of post-bond testing defect free dies

or Known Good Dies (KGDs) need to be identi�ed �rst before they are stacked

and packaged into the complete 3D-SIC. A 3D testing strategy must be support

testing of individual dies along with the testing of the entire stack. Mid-bond

testing [3] or partial-stack testing is also carried on optionally in the intermediate

process of stacking of pre-bond tested dies. Figure 3.1 shows the various stages of

3D SIC testing. In post-bond testing, test data can only be feed through the pins

of the lowest die of the stack. For 3D-SIC, TAMs need to be designed for each

die to transport test data to each core on the die. In addition a 3D-TAM must

exist to transport test data from test pins, which are located only on the lowest

die, to dies situated at higher levels. TSVs are used to route the 3D TAM and

transport the test data between dies. Each TSV is the potential source of defect

in the 3D-SIC and incurs area costs. The number of TSVs available for testing are

limited as they may be used for the transportation of functional signals, clock or

power/ground. Thus the 3D testing problem must also focus on the minimization

of TSVs. In traditional SOC testing problems, increased parallelism to reduce

TAT led to a depletion of available test resource or TAM width. However in 3D

SICs, increased die or core parallelism also leads to increased TSV usage at each

layer. Thus at any point during the test, the selected core or die parallelism must

be validated for the given TSV limit.

17
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The 3D-integrator can be presented with the 3D-SIC in 3 forms -hard dies, soft

dies and �rm dies . For 3D-SIC with hard dies, the vendors provide fabricated dies

with �xed test bandwidth and test time to the 3D-integrator. For soft dies, the

test architecture of individual dies is not �xed and any number of test resources

within the maximum available test pin limit can be allocated to any die. For

�rm dies , a test architecture for the die may already exist but a serial/parallel

conversion hardware can be added to the die to reduce TSV and test resource

use. For the sake of simplicity, only hard dies and soft dies are considered in

this work. Hard dies o�er less �exibility for optimization, as the test engineers are

limited to selection of test concurrency between dies. 3D-SIC with soft dies provide

better opportunity of optimization as the number of test resources allocated to a

particular die can be varied such that the TAT of the overall stack is minimized

without exceeding the maximum allowable TSV usage. However even in the case

of soft die it is may not be possible to change the test pins allocated to a die for

the duration of the test. Thus the number of test pins allotted to a die will remain

same for the entire duration of the test. This may lead to wastage of test resources

as the cores scheduled on the die may not be utilizing all the resources allotted to

the die for the entire duration of the test.

In this work we have developed two approaches that allow comprehensive test-

ing strategies for 3D-SICs under various scenarios. Each layer in the 3D-SIC is

considered to be made up of a single die. Each core situated on the die is consid-

ered to be a part of a single die only, that is 3D cores are not considered. The

�rst approach or the direct stack approach o�ers more �exibility for optimization

and is essential when TAT minimization of overall stack is the primary focus.

It is similar to optimization of 2D SOCs with the additional constraint of TSV

added. A bin-packing heuristic, guided by a (Particle Swarm Optimization) PSO

[36] based search procedure, selects cores situated on di�erent layers to be tested

concurrently. The test schedule is checked for feasibility with the given TSV limit

whenever a new core is selected to be scheduled.Direct stack approach o�ers

a reduced CPU time required to generate the test schedule of the entire stack.

The second approach or thedie �rst approach allows testing of invdividual dies

and also of the entire stack. It is useful when defect free dies or Known Good

Dies (KGDs) need to be identi�ed �rst before stacking and then packaged into

the complete 3D-SIC. It is carried out in two steps. Firstdie level optimizationis

performed for individual dies in the stack. These results are then used forstack

level optimization, where test concurrency between dies is selected using a bin-

packing approach. The separation into two steps, allows for testing ofhard dies

where onlystack level optimizationcan be perfomed as test architecture for dies is

already �xed. For soft dies, thedie �rst approach allows testing for the case where
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test resources allocated to an individual die can't be changed for duration of the

test. For die �rst testing, other 3D test architecture optimization approaches [54],

consider one of the previously reported 2D test architecture optimization methods

[21], however, this work has developed a new PSO guided 2D test architecture

optimization technique to generate test schedule of individual dies.

The rest of the chapter is organized as follows. In Section 3.2.1, we formulate

the problem for 3D-SICs with hard and soft dies. A global limit is set on the

number of dedicated TSVs to be used for test access and constraints are imposed

on test bandwidth due to a limited number of test pins on the lowest die in

the stack. Section 3.2.2 present the bin-packing algorithm developed for test

scheduling 3D-SIC with hard dies. Section 3.2.3 enumerates the PSO guided bin-

packing algorithm devoloped for 3D-SIC with soft dies using both thedirect stack

and die �rst approaches.

Figure 3.1: Test stages of 3D-SIC testing[2]

3.2. Test Scheduling

3.2.1. Problem Formulation

3D-SIC with hard die:

A stack consisting ofM diesD i (1 � i � M ) is to be tested with :

� Wstack maximum available test pins,

� TSVstack maximum number of allowable TSVs,

� Each dieD i has a prede�ned test pin value ofWD i (WD i � Wstack ) and asso-

ciated test time, TD i .

Each die can represented with a rectangle with prede�ned height and width given

by WD i and TD i respectively. To get a schedule for the full stack the rectangles

are to be packed into a bin of �xed height (Wstack ) so that TAT (width of the bin)

is minimized without exceeding the TSV limit (TSVstack ).
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3D-SIC with soft die:

A stack consisting ofM diesD i (1 � i � M ) is to be tested with :

� Wstack maximum available test pins

� TSVstack maximum number of allowable TSVs to route the 3D-TAM

� Each dieD i consists ofN i number of coresC1, C2 :::CN i

� The number of test patterns required to test coreCj (1 � j � N i ) is pj .

� Each core Cj on die D i (1 � j � N i ) is represented by a set of wrapper

con�gurations Rj

The test resource of coreCj with j th wrapper con�guration can be represented

by a rectangle whose height and width represent allocated test pins (wij ) and the

corresponding test time (T(wij )) respectively. Although the �exibility of choosing

TAM width for individual dies or cores o�er better opportunity to optimize overall

test time of the stack, test architecture design and scheduling of 3D-SIC with soft

dies becomes more complex than hard die cases. Both the problems of (i) 3D-TAM

distribution among dies of the di�erent layers and (ii) determining an optimized

test schedule for cores in a die, are NP-hard [54]. As described in Section 3.1 test

architecture optimization for 3D-SIC with soft die is approached in two ways :

� Direct Stack Optimization: The objective is to determine an optimal TAM

design and corresponding test schedule for the stack such that the total test time

TT for the stack is minimized without violating resource and TSV constraints.

A schedule for the full stack is obtained directly by packing the rectangles into a

bin of �xed height ( Wstack ) so that TAT (width of the bin) is minimized without

exceeding the TSV limit (TSVstack ).

� Die First Optimization: The objective is to determine an optimal TAM

design and corresponding test schedule for the stack, as well as for each die,

such that the total test time TT for the stack is minimized without violating

resource and TSV constraints. It consists of two steps :

1. Die Level Optimization

Here a 2D test architecture and test schedule is developed for the individual

dies of the stack. For this purpose,WD i of each die is varied from1 to Wstack .

The die level scheduling problem is to allocate test resources to coresC1, C2

:::Ck (1 � i � N i ) on the die such that the test time (TAT) is minimized.

To get the schedule for the die, cores on the die represented by rectangle

are packed into bins of sizeWD i for each value ofWD i . In this way the

correspondingTD i is obtained.



3.2. Test Scheduling 21

2. Stack Level Optimization In stack level optimization, total test resources

Wstack are optimally allocated to all the dies and a test schedule of the dies

is generated in such a way, so that the total test timeTT to test the stack is

minimized. The problem is similar to test architecture optimization of 3D-

SIC with hard dies with an added complexity of selection of TAM allocation

of each die. Using the information obtained fromdie level optimizationeach

die can now be represented by a rectangle of height and width given byWD i

and TD i respectively. Now to get a schedule for the full stack the rectangles

are to be packed into a bin of �xed height (Wstack ) so that TAT (width of

the bin) is minimized without exceeding the TSV limit (TSVstack ).

In 3D-SIC with hard die, test rectangles are already given to the integrator and

hence we can proceed with scheduling of these rectangles. This has been described

in Section 3.2.2. For 3D-SIC with soft die, generation of test rectangles for each

core or die has been performed using PSO. Each particle gives a set of rectangles,

one for each core or die. Fitness of the particle has been evaluated by performing

a scheduling of these rectangles. In Section 3.2.3 we have described our PSO

approach.

3.2.2. Optimization of 3D-SIC with Hard Die

As all the dies have to be tested using prede�ned number of test resources and

test architecture of each die is �xed,die level optimization is not applicable for

3D-SIC with hard die. Only the test concurrency and ordering of the dies in the

schedule can be decided. In this section, a test scheduling heuristic considering

both session-based testing and session-less testing is presented

Session-based testing

For session-based testing, maximum test time of all the dies tested concurrently

in kth test session (TSk), is the test time (TSTk) of that session. It may be noted

that, if all the dies are tested serially, a maximum number ofM test sessions

are possible. Total test time (TT) of the stack is the summation of all the test

sessionâ€™s time. The test scheduling heuristic3D_ Test_ Schedule(Algorithm

3.1) starts with sorting the diesD i (1 � i � M ) in descending order of test time

TD i . A die is choosenD i in sorted order and check its schedulability in a test

session without violating resource (Wstack ) and TSV (TSVstack ) constraints. A

TSV_ Checker (Procedure 3.2) checks TSV requirement between di�erent layers

of the stack to facilitate concurrent testing ofD i with other dies tested in the same

sessionTSk . The number of TSVs required between layerj and j � 1 is determined

by two factors- (i) the maximum number of test pins required by a layer at or above

j and (ii) the sum of test pins for parallel tested dies at or above layerj in the

same test session. TSVs between layersj and j � 1 must be equal to the maximum
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of these two quantities. IfD i does not satisfy resource and TSV constraints, next

die is considered or scheduling is performedD i in next test sessionTSk+1 . This

process is repeated until all the dies get scheduled. However, it must be kept in

mind that, TSVs cannot be allocated dynamically. It may happen that the TSV

requirement between layersj and j � 1 (TSVj ) in test sessionTSk+1 is less than

that in TSk . Still number of TSVs have to beTSVj k for TSk+1 , otherwise it will

hamper the test schedule ofTSk . So, TSVj is updated only if some later test

session requires more TSVs between layersj and j � 1. In that case, earlier test

session will have some unused TSVs. However, total TSV requirement at any test

session must not violate the limit ofTSVstack .

Figure 3.2 shows a 3D stack with test width alloted to each die. AtTSV5

layer, only test data for die 5 needs to be transported and hence only 30 TSVs

are required. Die 4 and 5 at the top need to be tested concurrently, thus 55

TSVs are required atTSV4. Similarly due to concurrent testing of die 4 and 5,

TSV3 = TSV2 = 55. Thus TotalTSV = (55 + 55 + 55 + 30)

Figure 3.2: An Example TSV allotment

Session-less testing

In a session-based testing, the dies tested in a test session, may not have the same

test times. Session time depends on the test time of the die with the largest test

time, scheduled in that session. As no new die can be scheduled in the middle of

a test session, the resources occupied by the die, which �nishes its testing earlier

in the session, have to remain unutilized till the session ends. As a result, total

test time increases unnecessarily. This shortcoming of session-based testing can

be overcome using session-less testing, which allows scheduling of a die at any

point in the schedule depending upon resource availability. In session-less test-

ing, instead of considering di�erent test sessions, two important data-structures
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Algorithm 3.1: 3D_Test_Schedule

Input : List of dies D i (1 � i � M ) to be scheduled with assigned test pins
WD i and test time TD i ;
Wstack : maximum test pins of the stack;
TSVstack : maximum TSV limit;

Var : TSk : kth test session (k � M );
TST: Test session time;
TSW: Test session width;
TT: Total time;
TSVj : number of TSVs between layerj and j � 1 (2 � j � M );

1 begin
2 TT  � 0;k  � 1 ;
3 for j  2 to M do
4 TSVj  � 0;

5 Sort the dies in descending order ofTD i ;
6 Mark all dies as unscheduled;
7 while there exists unscheduled diedo
8 TSWk  � Wstack ;
9 TSTk  � 0;

10 while there exists unscheduled and unchecked die with
WD i � TSWk do

11 Select an unscheduled dieD i in sorted order;
12 if (WD i � TSWk) then
13 TSV_ Checker();
14 if yesthen
15 ScheduleD i ; Mark D i as scheduled;
16 TSWk = TSWk � WD i ;
17 if (TD i > TSTk) then
18 TSTk = TD i ;

19 else
20 Check next die of the sorted list;

21 TT = TT + TSTk ; k++;

22 Return TT as total schedule generation time;

throughout the schedule are considered.Break_ Point_ List (BPstack ) note the

points in the schedule, where a die �nishes its test and releases occupied test pins.

An unscheduled die can be scheduled at any of the break-points,bpstack k 2 BP .

Available_ Test_ P ins(ATPstack ) keeps track of the available test resources at

each bpstack k . A die D i is chosen in descending order of test time and check

its schedulability in the minimum break-point bpstack k . The sameTSV_ Checker

mentioned in session-based testing, is used to check TSV constraint at eachbpstack k ,

where an unscheduled die can be scheduled.BPstack and ATPstack get updated
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Algorithm 3.2: TSV_Checker

1 TSVtotal  � 0;
2 for j  2 to M do
3 TSVparallel  � 0;
4 WDmax  � 0;
5 for l  j to M do
6 if (WD l > WD max ) then
7 WDmax = WD l ;

8 if D l is being testedthen
9 TSVparallel = TSVparallel + WD l ;

10 TSVj k = max ( WDmax ; TSVparallel ; TSVj k � 1 );
11 TSVtotal = TSVtotal + TSVj k ;

12 if (TSVtotal < TSVstack ) then
13 Return yes;

14 else
15 Return no;

with the schedule of each die. If su�cient resources are not available to schedule

any unscheduled die at any break-point, the algorithm shifts to the next break-

point. This process continues till all the dies get scheduled. Finally maximum test

�nish time among all the dies is reported as the test timeTT of the stack.

3.2.3. Particle Swarm Optimization for 3D-SIC with Soft Die

Particle Swarm Optimization (PSO) [36] is a population based stochastic tech-

nique developed by Eberhart and Kennedy in 1995. PSO is initialized with a

group of particles with random positions and it searches for optima by updating

their positions through generations. In PSO system, multiple candidate solutions

coexist and collaborate simultaneously. Each solution, called a particle, �ies in

the problem space according to its own experience as well as the experience of

neighboring particles. In PSO, each particle is a single solution in the search

space, having a �tness value. The quality of a particle is evaluated by its �tness.

Particles evolve over generations guided by self- and group-intelligence, and also

via their inertia. Any PSO formulation involves choosing a proper representation

of the particles, their �tness calculation, and de�ning an evolution policy. Inspired

by its success in solving problems in continuous domain, several researchers have

attempted to apply it in discrete domain as well [75]. We use PSO to allocate test

resources to dies or cores in case of 3D-SIC with soft dies. PSO is not required in

the case of hard dies as the test resources are already pre-allocated.

� Particle structure for Direct Stack test:



3.2. Test Scheduling 25

Each core on the stack has a set of possible test rectangles and the maximum

number of rectangles for any core beR. Let B = dlogR
2 e. A particle consists

of N � B number of bits. First B bits identify the test rectangle selected for

the �rst core, secondB bits for the second core, and so on. Figure 3.3 shows

a sample particle withN = 4 and B = 4. In this case, test rectangles 9, 2, 8

and 13 are selected for cores 1, 2, 3 and 4. For the initial generation, particles

are generated randomly; however care has been taken to ensure that the indices

generated for a core are always within the total number of rectangles in it.

Due to the TSV constraint an additional check is required when the particle

is generated or alligned with another particle. This check is required to ensure

that for the core allotted a given amount of TAM width or test resource, it is

possible to transport the allotted resources using the given maximum number

of TSVs. For a coreCk situated on dieD i at level i , this condition is given by -

WCk �
TSVstack

i
(3.1)

If the condition is satis�ed the core is allotted the test resource otherwise another

value is generated.

Figure 3.3: Sample particle structure of 4 cores withWstack =16 (B = 4)

� Particle structure for Die First test: For die level optimizationthe particle

structure is identical to the particle structure for the Direct Stack test. For

stack level optimization, in the Figure 3.3, �rst B bits identify the test rectangle

selected for the �rst die, secondB bits for the second die, and so on. In this

case, whenever a new particle is generated or alligned with another particle,

a check is required to ensure that is possible to test each die serially without

violating any TSV constraint. To be able to test each die serially, the number

of TSVs at each layer is equal to the maximum of the test resources allotted to

the dies above that layer. The sum of TSVs at all layers must be less than the

given TSV limit. This check is described in Procedure 3.3.

� Local Best ( pbest) and Global Best ( gbest):

In a PSO formulation, evolution of a particle is guided by three factors - its
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Algorithm 3.3: Serial_Checker

1 TSVtotal  � 0;
2 for j  2 to M do
3 WDmax  � 0;
4 for l  j to M do
5 if (WD l > WD max ) then
6 WDmax = WD l ;

7 TSVtotal = TSVtotal + WDmax ;

8 if (TSVtotal < TSVstack ) then
9 Return yes;

10 else
11 Return no;

own intelligence, global (swarm) intelligence, and the inertia factor. A particle

always remembers its history about its best structure over generations. This

is called the local best (pbest) of the particle. In a particular generation, the

particle with the best �tness value is the global best (gbest) of the generation.

For the initial generation, pbestof each particle is initialized to itself while the

gbestof the generation is the best one of the �rst generation. In the successive

generations, new particles are created using thereplaceoperator noted next.

� Evolution of a particle

In this step, the replace operator attempts to align a particle with its pbest

and the gbestparticles, with some probability. For the sake of this alignment,

the replace operator is applied at each bit position of a particle. For the bit

position i of a particle, the bit is replaced by the corresponding bit ofpbest

particle with probability � . After the operator has been applied forpbest, the

same is done with reference togbestwith probability of replacement, � . After

both the replacement operators have been applied to all bit positions for a core,

a consistency check is performed. If the new rectangle number for the core

becomes larger than the total number of rectangles available for the core, the

rectangle number is reverted back to its value in the original particle. Similar

replacement operations and consistency checks are also done on the frequency

part of the particle in multi-frequency test environment. In our experimentation,

we have kept both � and � values at 0.1. Figure 3.4 shows an examplee of

alignment of a particle towards its local best.

� Fitness of a particle

Direct Stack testing
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(a)

(b)

(c)

Figure 3.4: Particle structure; (a) Initial Particle, (b) Local Best Particle, (c) Evolved
Particle

Fitness of a particle is equal to the total test time (TAT) of the 3D-SIC after

scheduling the test rectangles using the3D_ Test_ Schedule_ Integrated pro-

cedure (Algorithm 3.4). The algorithm takes as input the rectangle setTRi ,

(1 � i � N ) corresponding to the particle, the maximum TAM width Wstack ,

and the maximum TSV limit TSVstack . It performs scheduling of the rectan-

gles, honouring the constraints that at no instant of time, the total TAM width

requirement exceedsWstack , and the TSV usage does not exceedTSVstack .

The test scheduling heuristic3D_ Test_ Schedule_ Integrated (Algorithm 3.4)

starts with sorting the coresCk in descending order of area which is test time

TCi � WCi . A core is choosenCk in sorted order and check its schedulability in a

test session without violating resource (Wstack ) and TSV (TSVstack ) constraints.

TSV_ Checker (Procedure 3.2) checks TSV requirement between di�erent lay-

ers of the stack to facilitate concurrent testing ofCk situated on a dieD i with

other cores located on di�erent die layers tested in the same sessionTSk . A die

is said to be tested in parallel with another if they consist of cores that are being

tested concurrently. The number of test pins required by a dieWD i is equal to

the sum of all cores being tested on the die during the given test session.

Die First testing :

For die level optimization, �tness of a particle is equal to the total test time
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Algorithm 3.4: 3D_Test_Schedule_Integrated

Input : List of dies D i (1 � i � M ) with each die containing coresCi to be
scheduled with assigned test pinsWCi , test time TCi ;
WD i : total TAM width of all cores scheduled on a die;
N i : total number of cores present on a die;
Wstack : maximum test pins of the stack;
TSVstack : maximum TSV limit;

Var : TSk : kth test session (k � M );
TST: Test session time;
TSW: Test session width;
TSP: Test session power;
TT: Total time;
TSVj : number of TSVs between layerj and j � 1 (2 � j � M );

1 begin
2 TT  � 0;k  � 1 ;
3 for j  2 to M do
4 TSVj  � 0;

5 Sort the cores in descending order ofTCi ;
6 Mark all cores as unscheduled;
7 while there exists unscheduled coredo
8 TSWk  � Wstack ;
9 TSTk  � 0;

10 while there exists unscheduled and unchecked core with
WCi � TSWk do

11 Select an unscheduled coreCi in sorted order;
12 for j  1 to Nm do
13 if Cj is being testedthen
14 WDm = WDm + WCi ;

15 if (WCi � TSWk) then
16 TSV_ Checker();
17 if yesthen
18 ScheduleCi ; Mark Ci as scheduled;
19 TSWk = TSWk � WCi ;
20 if (TD i > TSTk) then
21 TSTk = TD i ;

22 else
23 Check next die of the sorted list;

24 TT = TT + TSTk ; k++;

25 Return TT as total schedule generation time;

(TAT) of the SOC after scheduling the test rectangles using the2D_ Test_ Schedule

procedure (Algorithm 3.5).

The algorithm takes as input the rectangle set corresponding to a particle, the
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maximum test pinsWdie . BPdie and ATPdie keep track of the scheduling points

and corresponding resource availability at those points. As the still unsched-

uled cores get scheduled, the listBPdie and ATPdie get updated. The rectangles

are sorted on their area values (test pins (w)� test time (T)) in a descending

order. The break-point list BPdie is scanned from the minimum to the max-

imum value. For the break-point bpdiek , the algorithm scans the unscheduled

rectangle list to check for the largest rectangle that can be scheduled atbpdiek .

If none are feasible, the algorithm advances to the next break-point. When

rectangles corresponding to all cores have been scheduled, the maximum end

time of testing of all cores gives the total test application time for the SOC. The

2D_ Test_ Schedulealgorithm to produce the schedule is presented next.

Similar kind of PSO formulation used fordie level optimization, is adopted for

stack level optimizationas well. Each dieD i is represented by a set of assigned

test pin value WD i k (1 � k � Wstack ) and associated test timeTD i k . These

values are obtained fromdie level optimization by varying the Wdie value from

1 to Wstack and noting the corresponding test times. Each particle selects a

tuple of assigned test pins and associated test time (WD i k , TD i k ) for each die.

Fitness of a particle is evaluated by calculating the test time of the stack by

using 3D_ Test_ Scheduleheuristic. Figure 3.5 describes the total �ow of the

test architecture design and test scheduling procedure for 3D-SIC with soft dies

using die �rst testing approach.

Algorithm 3.5: 2D_Test_Schedule
Input : List of rectangles to be scheduled;Wdie , the maximum test pins;
Var : BPdie : A list of break points; ATPdie : List of available test pins at

each break pointbpdie 2 BPdie ;
1 begin
2 Sort list of rectangles on decreasing area;
3 Mark all rectangles as unscheduled;
4 while there exists unscheduled rectanglesdo
5 Check if any rectangle picked up in sorted order can be scheduled at

next break point bpdiek with available TAM resourceatpdiek ;
6 if yesthen
7 Update BPdie , ATPdie and Rectangle List;
8 Mark corresponding rectangle scheduled;

9 else
10 Continue with next bpdiek 2 BPdie ;

11 Return the maximum test end time of all rectangles;

� Termination conditions
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Figure 3.5: Test Flow for 3D-SIC with soft dies.

If for the last 200 generations, best result, that is the particle which has the

maximum �tness, does not change, we stop running the algorithm. We have

also used a maximum iteration condition, after which we stop, even if solution

is still improving.

Algorithm 3.6 PSO_Pseudocodenotes the proposed PSO.

Algorithm 3.6: PSO_Pseudocode

1 begin
2 Initialize all particles;
3 while Max iterations not reached andgbesthas changed in last 200

generationsdo
4 for all Particles do
5 Calculate �tness value using Algorithm 4.1;
6 if �tness is better than current pbestthen
7 Update pbest;

8 if �tness is better than current gbestthen
9 Update gbest;

10 for all Particles do
11 Apply the replaceoperator to �nd the new position;

3.3. Experimental Results
In this section we present results of experimentation with 3D-SIC benchmarks

presented in [54]. The benchmarks are chosen for the sake of comaparison. Figure
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Figure 3.6: 3D-SIC benchmarks [54]

3.6 presents the SICs, which are formed using ITC'02 benchmarks as dies.

To have a better comparative analysis for all di�erent categories of SIC test

scheduling, we have divided our results into 2 subsections. The �rst one presents

our results of our bin-packing test scheduling algorithm for 3D-SIC with hard

dies. The second subsection presents the results of our PSO guided bin-packing

algorithm developed for 3D-SIC with soft dies. Results of bothdirect stack and

die �rst are presented.

3.3.1. Test Scheduling of 3D-SIC with hard die

For 3D-SIC with hard die, the same test architectures of individual dies reported

in [54] are considered. Table 3.1 reports the details of test architectures of each

die.

Table 3.1: Test Lengths And Test Pins For Hard Dies[54]

Die d695 f 2126 p22810 p34392 p93791
Test length 96927 669329 651281 1384949 1947063

Test pin 15 20 25 25 30

Table 3.2 shows the comparison of the test scheduling approaches (both

session-based and session-less) with the approach presented in [54] for 3D-SIC

with hard dies. The �rst two columns of Table 3.2 describe the maximum al-

lowable TSV limit and number of allocated test pins to test the SIC. Columns

3, 4 and 8, 9 present the test time and corresponding test schedule reported in

[54] for SIC1 and SIC2 respectively. The test times and schedules obtained from

the 3D_ Test_ Scheduleheuristic considering session-based (SB) testing for both

SIC1 and SIC2 are reported in columns 5, 6 and 10, 11 respectively while columns

7 and 12 report session-less (SL) test times for SIC1 and SIC2 respectively. It may

be noted from Table 3.2 that the schedules reported in [54] violate maximum TSV

limit TSVstack in several cases. For example, the number of test pins of dies 3, 4

and 5 of SIC1 are 25, 20 and 15 respectively. To facilitate parallel testing of these
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Table 3.2: Comparison of Test Scheduling Approach (Session-Based and Session-
Less) With [54] For 3D-SIC With Hard Die

3D-SIC with hard die SIC1 SIC2

TSVstack Wstack
Test time

[54]
Schedule

[54]
Test time

(SB)
Schedule

(SB)
Test time

(SL)
Test time

[54]
Schedule

[54]
Test time

(SB)
Schedule

(SB)
Test time

(SL)
160 30 4748920 1, 2, 3, 4, 5 4748920 1, 2, 4, 3, 5 4748920 4748920 1, 2, 3, 4, 5 4748920 5, 4, 2, 3, 1 4748920
160 40 4652620 1, 2, 3,4 k 5 4652620 1, 2 k 5, 4, 3 4652620 4652620 1 k 3, 2, 4, 5 4652620 5, 4 k 1, 2, 3 4652620
160 50 3428310 1 k 4, 2 k 3, 5 3428310 1 k 4, 2 k 3, 5 3332012 3428310 1, 2 k 5, 3 k 4 3428310 5 k 2, 4 k 3, 1 3332012
160 60 2616390 1 k 2, 3 k 4 k 5 2712690 1 k 2, 4 k 3, 5 2598340 2616390 1 k 2 k 3, 4 k 5 3428310 5 k 2, 4 k 3, 1 3332012
160 70 2616390 1 k 2 k 5, 3 k 4 2616390 1 k 2 k 5, 4 k 3 2598340 2616390 1 k 2 k 3, 4 k 5 3332012 5 k 2 k 1, 4 k 3 3332012
160 80 2598340 1 k 2 k 4, 3 k 5 2598340 1 k 2 k 4, 3 k 5 1947063 2616390 1 k 2 k 3, 4 k 5 3332012 5 k 2 k 1, 4 k 3 3332012
160 90 2598340 1 k 2 k 4, 3 k 5 2598340 1 k 2 k 4 k 5, 3 1947063 2616390 1 k 2 k 3, 4 k 5 3332012 5 k 2 k 1, 4 k 3 3332012
160 100 2043360 1 k 2 k 3 k 4, 5 2043360 1 k 2 k 4 k 3, 5 1947063 2616390 1 k 2 k 3, 4 k 5 3332012 5 k 2 k 1, 4 k 3 3332012

three dies, 60 TSVs (25 + 20 + 15) are required between each of the layers 2 and 1

and layers 3 and 2. The TSV requirement between dies 4 and 3 is 35 (20 + 15) and

�nally 15 TSVs are required between layers 5 and 4. So, the schedule reported in

[54], for TSVstack = 160 and Wstack = 60, which shows parallel scheduling of dies

3, 4 and 5 requires a total of 170 (60 + 60 + 5 + 15 = 170) TSVs, which clearly

violates the maximum TSV limit. Similarly, for SIC2, all the schedules (Wstack =

60, 70, 80, 90 and 100), which report parallel testing of dies 4 and 5, require a

total of 195 TSVs. It again violates the maximum TSV limit. In contrast, no TSV

limit violation can be noted in the schedules generated by the3D_ Test_ Schedule

heuristic. Moreover, the session-based test time results are same with the results

reported in [54], for all the cases where [54] does not violateTSVstack . Session-less

testing further improves test time over session-based testing.

3.3.2. Test Scheduling of 3D-SIC with soft die

Table 3.3 presents the direct stack testing results for SIC1 and SIC2 with soft

dies. Test times of cores at di�erent TAM widths are fed to the PSO guided bin

packing heuristic which evolves over generations to �nd optimum test resource

allocation for every core and the corresponding test schedule for each core such

that the overall TAT is minimized. In Table 3.3 results of SIC1 are compared with

those presented in [54]. The �rst two columns of Table 3.3 describe the maximum

allowable TSV limit and number of allocated test pins to test the SIC. Column 3

presents the test time reported in [54] for SIC1. Columns 4 and 6 present the test

time obtained by using the PSO guided3D_ Test_ Schedule_ Integrated heuristic

for SIC1 and SIC2 respectively. Column 5 shows the test time improvement over

[54]. It may be noted that a test time improvement of 52% can be achieved over

[54].

Table 3.4 shows how3D_ Test_ Schedule_ Integrated progresses over time

for Wstack = 60 and TSVstack = 140. Column 1 shows the break point value at

which the hueristic is currently scheduling. Column 2 and 3 show the dies and

cores being tested concurrently at a given break point. Column 4 and 5 show

the allotted test pins to each die and the number of TSVs required to satisfy the
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Table 3.3: Direct Stack scheduling using3D_ Test_ Schedule_ Integrated (3D-
SIC With Soft Die)

TSVstack Wstack
Test Time

[54]

SIC1
Test Time

(DS)

Impv. over [54]
%

SIC2
Test Time

(DS)
140 30 4795930 3666034 23.56 3666008
140 40 3841360 2768077 27.94 2787778
140 50 3090720 2215398 28.32 2730516
140 60 2873290 1853489 35.49 2730516
140 70 2743320 1593334 41.92 2730516
140 80 2439760 1403787 42.46 2730516
140 90 2395760 1252576 47.72 2730516
140 100 2369680 1136263 52.05 2730516

allotted test pin values and test concurrency. The last column shows the �nal

value of TSVs present at each layer. As can be seen clearly that value of �nal TSV

is always greater than the current TSV and hence the �nal TSV allottment will

satisfy the TSV allottment for all tests. Also, the total test pin count and TSV

count does not exceed the maximum allowed values at any point. For simplicity

only values till break point 2020280have been shown. The �nal test time value

can be see as2215398from Table 3.3

Next, the results of die �rst testing for soft dies are presented.die level

optimization is similar to test scheduling of 2D SOCs which has been widely

stduied. Among techniques used for 2D SOC scheduling, evolutionary approaches

[87, 77, 84, 4, 19, 78] do better than other iterative heuristics. Since PSO is an evo-

lutionary algorithm, we have compared our results with several other approaches

[87, 77, 84, 4, 19, 78] for the largest die in the stackp93791, as noted in Table

3.5. It can be seen that PSO does better than others in all the cases ofp93791.

For other dies too, PSO is found to do better than most other approaches.

The die level optimization results of individual dies are fed to the PSO guided

3D_ Test_ Scheduleheuristic, which evolve over generations to explore a large

search space of solution to �nd a near optimal test schedule of the stack. Table

3.6 presents the comparison with the approach reported in [54] for di�erent values

of Wstack for SIC1. Column 3 of Table 3.6 reports the test time reported in

[54] while columns 4 and 9 report the session-based and session-less test time

results respectively. Column 6 reports the test schedule obtained from session-

based testing. Corresponding test pin allocation to each die and associated TSV

requirements between all the layers are reported in columns 7 and 8 respectively.

For example, to test SIC1 with 40 test pins, 26 test pins are allocated to die 1. Dies

2, 3, 4 and 5 are tested using 14, 40, 34 and 26 test pins respectively. Similarly
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Table 3.4: Direct Stack scheduling using3D_ Test_ Schedule_ Integrated (3D-
SIC With Soft Die)

Break point Parallel Tested Dies Parallel Tested Cores
Test Pins

(*2)
Current TSV

(*2)
Final TSV

(*2)
0 1 2 4 6 20 34 50 80 81 13 8 0 4 0 12 4 4 0 23 23 9 9 0

636758 1 2 4 6 27 29 34 50 80 81 13 8 0 4 0 12 4 4 0 23 23 9 9 0
679337 1 2 3 4 1 27 29 34 42 50 77 80 81 8 11 2 4 0 17 6 4 0 23 23 9 9 0
939855 1 2 3 4 1 13 27 29 42 50 77 80 81 13 6 2 4 0 12 6 4 0 23 23 9 9 0
1109078 1 2 3 4 1 13 14 27 29 42 50 77 80 15 6 2 2 0 10 4 2 0 23 23 9 9 0
1335509 1 2 3 4 1 14 23 27 29 42 50 77 80 15 6 2 2 0 10 4 2 0 23 23 9 9 0
1350183 1 2 3 4 1 12 14 23 29 32 42 50 77 80 15 6 2 2 0 10 4 2 0 23 23 9 9 0
1427347 1 2 3 1 12 14 17 23 29 32 42 50 77 17 6 2 0 0 8 2 0 0 23 23 9 9 0
1428695 1 2 3 1 12 14 17 23 29 32 37 50 53 77 17 5 3 0 0 8 3 0 0 23 23 9 9 0
1624360 1 2 3 12 14 17 23 29 32 37 50 51 53 72 77 14 7 4 0 0 11 4 0 0 23 23 9 9 0
1693419 1 2 3 12 14 17 23 29 32 37 43 51 53 72 76 77 14 5 6 0 0 11 6 0 0 23 23 9 9 0
1699746 1 2 3 12 14 17 19 29 32 37 43 51 53 72 76 77 14 5 6 0 0 11 6 0 0 23 23 9 9 0
1737848 1 2 3 12 14 17 19 29 32 37 40 43 51 53 72 76 14 7 4 0 0 11 4 0 0 23 23 9 9 0
1785921 1 2 3 12 14 17 19 32 33 37 40 43 51 53 72 76 13 8 4 0 0 12 4 0 0 23 23 9 9 0
1823460 1 2 3 12 14 17 19 32 33 40 43 51 53 69 72 76 13 6 6 0 0 12 6 0 0 23 23 9 9 0
1903129 1 2 3 12 14 17 32 33 40 43 51 52 53 69 72 76 8 6 11 0 0 17 11 0 0 23 23 9 9 0
1916267 1 2 3 5 12 14 17 32 33 40 51 52 53 69 72 76 89 8 5 11 0 1 17 12 1 1 23 23 9 9 0
1942780 1 2 3 5 12 14 17 32 33 35 40 51 52 53 72 76 89 8 7 9 0 1 17 10 1 1 23 23 9 9 0
1945595 1 2 3 5 14 17 32 33 35 36 40 51 52 53 72 76 89 5 10 9 0 1 20 10 1 1 23 23 9 9 0
1950668 1 2 3 5 14 17 32 33 35 36 40 47 51 52 53 72 89 5 12 7 0 1 20 8 1 1 23 23 9 9 0
1975952 1 2 3 4 5 14 17 32 35 36 40 47 51 52 53 72 83 89 5 11 7 1 1 20 9 2 1 23 23 9 9 0
1976177 1 2 3 4 5 14 17 32 35 36 47 51 52 53 72 82 83 89 5 9 7 3 1 20 11 4 1 23 23 9 9 0
2003952 1 2 3 4 5 14 17 32 35 36 38 51 52 53 72 82 83 89 91 5 8 7 3 2 20 12 5 2 23 23 9 9 0
2004953 1 2 3 4 5 14 17 32 36 38 51 52 53 72 73 82 83 89 91 5 6 9 3 2 20 14 5 2 23 23 9 9 0
2011605 1 2 3 4 5 14 17 32 36 38 51 52 53 65 72 74 82 83 89 915 6 9 3 2 20 14 5 2 23 23 9 9 0
2019125 1 2 3 4 5 14 17 32 36 38 52 53 61 65 72 74 82 83 86 89 915 4 10 3 3 20 16 6 3 23 23 9 9 0
2020280 1 2 3 4 5 14 17 32 36 38 44 52 61 65 72 74 82 83 86 89 915 5 9 3 3 20 15 6 3 23 23 9 9 0
2021668 1 2 3 4 5 14 17 32 36 38 52 61 65 67 72 74 82 83 86 89 915 4 10 3 3 20 16 6 3 23 23 9 9 0
2022606 1 2 3 4 5 14 17 32 36 38 48 52 61 67 72 74 82 83 86 89 915 5 9 3 3 20 15 6 3 23 23 9 9 0
2023014 1 2 3 4 5 14 17 32 36 38 48 52 61 64 72 74 82 83 86 89 915 5 9 3 3 20 15 6 3 23 23 9 9 0
2023288 1 2 3 4 5 14 17 32 36 38 48 52 61 64 72 74 78 83 86 89 915 5 11 1 3 20 15 4 3 23 23 9 9 0
2023637 1 2 3 4 5 14 17 32 36 38 52 61 64 72 74 78 83 86 89 915 4 11 1 3 19 15 4 3 23 23 9 9 0
2023674 1 2 3 4 5 14 17 32 36 38 52 61 64 72 74 83 86 88 89 915 4 9 1 6 20 16 7 6 23 23 9 9 0
2023792 1 2 3 4 5 14 17 32 36 38 52 61 72 74 83 86 88 89 91 5 4 8 1 6 19 15 7 6 23 23 9 9 0
2024183 1 2 3 4 5 14 17 32 36 38 52 61 72 74 83 88 89 91 5 4 8 1 5 18 14 6 5 23 23 9 9 0
2024742 1 2 3 4 5 14 17 24 32 36 38 52 61 72 83 88 89 91 8 4 7 1 5 17 13 6 5 23 23 9 9 0
2026173 1 2 3 5 14 17 24 32 36 38 52 61 72 88 89 91 8 4 7 0 5 16 12 5 5 23 23 9 9 0
2026379 1 2 3 5 14 17 24 32 36 38 52 61 72 88 89 8 4 7 0 4 15 11 4 4 23 23 9 9 0
2027540 1 2 3 5 14 17 24 32 36 52 61 71 72 88 89 8 3 10 0 4 17 14 4 4 23 23 9 9 0
2029244 1 2 3 5 14 17 24 32 36 52 71 72 88 89 8 3 9 0 4 16 13 4 4 23 23 9 9 0
2032124 1 3 5 14 17 24 32 52 60 71 72 88 89 8 0 13 0 4 17 17 4 4 23 23 9 9 0
2039163 1 2 3 5 14 17 24 32 49 52 60 72 88 89 8 3 10 0 4 17 14 4 4 23 23 9 9 0
2043881 1 2 3 5 14 17 24 32 41 52 60 72 88 89 8 3 10 0 4 17 14 4 4 23 23 9 9 0
2046248 1 2 3 5 14 17 32 41 52 60 68 72 88 89 5 3 13 0 4 20 17 4 4 23 23 9 9 0
2047312 1 3 5 14 17 32 52 60 68 72 75 88 89 5 0 16 0 4 20 20 4 4 23 23 9 9 0
2048937 1 3 5 17 32 52 60 68 72 75 88 89 3 0 16 0 4 20 20 4 4 23 23 9 9 0
2049212 1 3 5 10 17 32 52 60 72 75 88 89 7 0 13 0 4 17 17 4 4 23 23 9 9 0

40, 40, 34 and 26 TSVs are required between dies 2 and 1, 3 and 2, 4 and 3, 5 and

4 respectively. It may be noted that, both of the session-based and session-less

test architecture and scheduling strategies can reduce test time of SIC1 upto 51%

compared to the results reported in [54].

Figure 3.7 presents a pictorial illustration of the session-based test schedule

of SIC1 for Wstack = 70 and TSVstack = 140, obtained from the PSO guided

3D_ Test_ Scheduleheuristic. All the dies are tested in three test sessions in

descending order of their individual test times and satisfying the resource and TSV

constraints. The �gure describes howTSVChecker updates the TSV requirements

between di�erent layers of the stack in successive test sessions. The number of

TSVs used and the actual number of TSVs assigned between each two dies in each
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Table 3.5: Comparison Of PSO With Other Scheduling Procedure For diep93791

Wmax LBT[20] GA[19] ACO[4] B*-SA[77] EA(C)[78] EA(nC)[78] SA[87] PSO
16 1746657 1750830 1747504 1782067 1754980 1754980 1757452 1720725
24 1164442 1170620 1175988 1190565 1171190 1184630 1169945 1150467
32 873334 877073 891103 890092 886038 900388 878493 864460
40 698670 704272 716112 707664 706820 724758 718005 695200
48 582227 587117 598286 609580 600986 611029 594575 579761
56 499053 505586 517692 517017 501057 520868 509041 496559
64 436673 442455 452951 452245 445748 458389 447974 435838

Table 3.6: Comparison of Test Scheduling Results With [54] For SIC1 (3D-SIC With
Soft Die)

TSVstack Wstack
Test time

[54]
Test time

SB
Impv. over [54]

%
Schedule

(SB)
Test pins

(SB)
TSV
(SB)

Test time
(SL)

Impv. over [54]
%

140 30 4795930 3755885 21.69 1, 2, 3, 4, 5 30, 30, 30, 30, 30 30, 30, 30, 30 3724309 22.34
140 40 3841360 2881060 25.0 2 k 1, 3, 4, 5 26, 14, 40, 34, 26 40, 40, 34, 26 2802280 27.05
140 50 3090720 2335908 24.42 1 k 2, 4 k 3 k 5 32, 18, 22, 18, 10 50, 50, 28, 10 2265193 26.71
140 60 2873290 1915438 33.34 1 k 3, 2 k 4, 5 48, 44, 12, 16, 26 60, 26, 26, 26 1875655 34.72
140 70 2743320 1701271 37.98 1 k 3, 2 k 4, 5 56, 48, 14, 18, 24 66, 24, 24, 24 1623521 40.82
140 80 2439760 1481323 39.28 1 k 4, 2 k 3, 5 66, 56, 24, 14, 18 80, 24, 18, 18 1448635 40.62
140 90 2395760 1396718 41.70 1 k 4, 2 k 3, 5 74, 56, 24, 16, 18 80, 24, 18, 18 1267313 47.10
140 100 2369680 1153410 51.32 4 k 1 k 3 k 2, 5 50, 28, 12, 10, 30 50, 30, 30, 30 1153169 51.33

Table 3.7: Test Scheduling Results (Session-Based And Session-Less) For SIC2 (3D-
SIC With Soft Die)

TSVstack Wstack
Test time

(SB)
Schedule

(SB)
Test pins

(SB)
TSVs
(SB)

Test Time
(SL)

140 30 3731707 5, 4, 3 k 2, 1 30, 14, 16, 30, 30 30, 30, 30, 30 3695406
140 40 2960916 5 k 3, 4 k 2, 1 40, 12, 10, 28, 30 40, 40, 30, 30 2874935
140 50 2846974 4 k 5 k 2, 3 k 1 10, 10, 40, 12, 22 44, 40, 34, 22 2735816
140 60 2846974 4 k 5 k 2 k 1, 3 10, 10, 40, 12, 22 44, 40, 34,22 2735816
140 70 2846974 4 k 5 k 2 k 1, 3 10, 10, 40, 12, 22 44, 40, 34, 22 2735816
140 80 2846974 4 k 5 k 2 k 1, 3 28, 10, 40, 12, 22 44, 40, 34, 22 2735816
140 90 2846974 4 k 5 k 2 k 1, 3 28, 10, 40, 12, 22 44, 40, 34, 22 2735816
140 100 2846974 4 k 5 k 2 k 1, 3 46, 10, 40, 12, 22 22, 20, 17, 11 2735816

session is mentioned in the �gure. It may be noted that, although 14 TSVs are

required to send test data to die 3 in session 1, we have to assign 48 TSVs between

die 2 and 1, as die 2 is allocated 48 test pins. The TSV value between die 2 and

1 gets updated to 66 in session 2, to facilitate parallel testing of dies 2 and 4. In

the �nal session, only 24 out of 66 TSVs are used between die 2 and 1. Rest of

the TSVs remain unused. Table 3.7 reports the test time results of SIC2. It may

be noted from Table 3.6 and Table 3.7 that session-less testing can reduce test

time over session-based testing for both the SIC1 and SIC2.

3.4. Conclusion
In this work we have presented a dual approach for 3D-SIC testing. Both ap-

proaches can produce optimized results without violating resources and TSV con-

strains. In the die �rst incorporation of PSO in both 2D and 3D optimizations
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